The Expanding Photosphere Method -- progress and problems

Jozsef Vinko & Katalin Takats

Dept. of Optics & Quantum Electronics, University of Szeged, Hungary

What is EPM?

a distance measurement method

- "an art instead of an objective measurement tool"
 (M. Hamuy, 2001)
- "the whole concept appears suspect"
 (E. Baron et al., 2004)

Basic concepts (Kirshner & Kwan 1974)

- the ejecta is spherically symmetric
- the expansion is homologous
- a photosphere exists at $\tau = 2/3$

$$R_{phot} = R_0 + v_{phot}(t) \cdot \Delta t \approx v_{phot} \cdot \Delta t$$

the photosphere radiates as a diluted blackbody

$$f_{\lambda} = \left(\frac{R_{phot}}{D}\right)^{2} \zeta^{2} \pi B_{\lambda}(T) = \Theta^{2} \zeta^{2} \pi B_{\lambda}(T)$$

Obtaining the distance

if we know Θ and v_{phot} :

$$t = t_{ex} + D \cdot \frac{\Theta}{v_{phot}}$$
 (Schmidt et al. 1994)

or:
$$\frac{\Theta}{v_{phot}} = \frac{1}{D}(t - t_{ex})$$
 (Dessart & Hillier, 2006)

2 unknowns: D, t_{ex} ==> at least 2 points are needed

Computing the angular radius

flux-based:

$$\Theta = \frac{1}{\zeta} \sqrt{\frac{f_{\lambda}}{\pi B_{\lambda}(T)}}$$

magnitude-based:

$$\sum_{\lambda} \left[m_{\lambda} - A_{\lambda} + 5 \log \Theta + 5 \log \zeta - b_{\lambda}(T) \right]^{2} = min$$

(Hamuy 2001; Leonard et al. 2002)

Measuring the color temperature Type II-P SNe

The correction (dilution) factors for Type II-P SNe

- origin of bb photons:
 thermalization depth (R_{th})
- photosphere: surface of last scattering $(R_{ph} > R_{th})$

$$F_{\lambda} \approx 2\sqrt{\frac{\kappa}{\sigma}} \cdot \left(\frac{R_{th}}{R_{ph}}\right)^{2} B_{\lambda}(T) => \zeta^{2} < 1$$

• but: line absorption at low T also decreases the observed flux: $T_{color} < T_{true} => \zeta^2 > 1$

The correction (dilution) factors for Type II-P SNe

Model phases:

- 10 60 days
 (Eastman et al. 1996)
- 5 40 days
 (Dessart & Hillier 2005)

Measuring photospheric velocities for Type II-P SNe

SYNOW models for Type II-P SNe between 10 -- 95 days

for each phase: a model sequence with many v

Measuring photospheric velocities for Type II-P SNe

Measuring photospheric velocities for Type II-P SNe

Early phases

Late phases

Examples: SN 1999em

Using Dessart & Hillier correction factors between t = 5 - 35 days:

 $D_{EPM} = 11.8 \pm 1 \text{ Mpc}$

 $D_{Cep} = 11.7 \pm 1.0 \text{ Mpc}$ (Leonard et al. 2003)

D_{EPM} = 11.5 ± 1.0 Mpc (Dessart & Hillier, 2006)

Examples: SN 1999em

Using Eastman et al. correction factors between t = 30 - 60 days:

 $D_{EPM} = 10.1 \pm 1 \text{ Mpc}$

 $D_{Cep} = 11.7 \pm 1.0 \text{ Mpc}$ (Leonard et al. 2003)

Examples: SN 2005cs

Examples: SN 2005cs

Using Dessart & Hillier correction factors between t = 5 - 35 days:

 $D_{EPM} = 6.9 \pm 1 \text{ Mpc}$

 $D_{ave} = 7.1 \pm 1.2 \text{ Mpc}$ (Takats & Vinko 2006)

Comparison with other methods

EPM

SCM (Hamuy, 2003)

Comparison with other methods

Conclusions

- EPM can give reliable distances to SNe II-P
- May serve as an independent method to test
 SNe la distances, even to high z

Thank you for your attention